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General solutions for exit time, permanence time, dilution factor, and volume of distribution at steady
state are derived for compartmental and noncompartmental systems. These derivations require that
the systems are linear and state-determined. Unique values for these parameters cannot be determined
when the site of elimination is not known; in this case the parameters can be defined by a range.
Interpretation of this range and its significance and use in clinical situations are illustrated with two

examples.
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INTRODUCTION

Many recent papers in the pharmacokinetic literature
have dealt with the concepts of transfer time, permanence
time, residence time, and steady-state volume of distribution
(1-13). Unfortunately, the different authors do not always
agree on the definitions of those quantities and frequently
use different terms and symbols for the same concepts. Here
we show the relationship among them and introduce another
quantity, dilution factor, defined as the ratio between the
steady-state volume of distribution and the initial volume of
distribution. Another term that was introduced a while ago,
the exit time (14), has not been used frequently; in our opin-
ion, the latter two terms help considerably in the description
of the pharmacokinetic properties of a drug.

In this paper, we present a general approach to estimat-
ing the permanence time, exit time, dilution factor, and vol-
ume of distribution at steady state using compartmental and
noncompartmental hypotheses. The compartmental ap-
proach utilizes either micro- or macroparameters. Explicit
solutions for two- and three-compartmental models are pre-
sented, as well as the general solution for an n-compartmen-
tal model.

The use of the compartmental approach is illustrated
with two numerical examples. With only serum concentra-
tion-versus-time data, the dilution factor and, consequently,
the steady-state volume of distribution cannot be estimated
uniquely; rather, they are defined by a discrete range of
values. When supplementary data are available, the dilution
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factor, volume of distribution at steady state, and exit time
for the body can be estimated more accurately.

A noncompartmental approach is also provided. The
outcome of this approach is highly dependent on the homo-
geneity of drug concentrations within the system.

Based on the conclusions presented in this paper, it is
recommended that exit time, dilution factor, and volume of
distribution at steady state be reported as a range, rather
than as a discrete number, when a unique solution cannot be
ascertained because vital auxiliary data are lacking. This is
particularly important for therapeutic agents, such as pro-
teins, which are not amenable to typical mass balance meth-
odology, due to reutilization of the peptides and amino acids
that are formed following proteolysis of the parent com-
pound. Furthermore, the general solution provided in this
paper makes it possible to provide values for these parame-
ters without the imposed constraint of assuming elimination
only from the sampling compartment.

TURNOVER TIME AND PERMANENCE TIME

The turnover time t; of compartment i is defined as the
expected interval of time spent by the drug in one passage
through it. The general equation of a compartment can be
written

i _
d

where x(t) is the amount of drug present in the compart-
ment, K, its fractional turnover rate, and r(f) the rate of entry
due to external feeding or internal recycling, or both.

The turnover time is the inverse of the fractional turn-
over rate,

—Kx; + r(t)
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in fact, at any moment the amount of the drug present in the
compartment is x (), and its rate of exit is K;x;; therefore, the
ratio

R

K,-x,- K,'

is the time spent by the drug, on the average, in that com-
partment.

The turnover time of a pool formed by a number of
compartments is still defined as the expected interval of time
spent by the drug in one passage through it; its determina-
tion, though, is possible only if the detailed fate of the drug
in all components of that pool is known.

The permanence time T, of a compartment is defined as
the expected interval of time spent by the drug in all its
passages through it.

If x(¢) is the amount of drug present in compartment i at
time ¢, and KX; its fractional turnover rate, then

Kix()dt

is the amount of drug leaving that compartment in the inter-
val of time from ¢ to ¢+ + dt, and

f0°° Kaxd(t)dt

is the total amount of drug leaving that compartment. If the
drug was initially administered to that same compartment at
time t = 0, and if it will eventually leave it totally, then the
ratio

f: Kx(t)dt

is equal to the expected number of times the drug will go
through that compartment; this quantity is called the turn-
over number.

If K; is constant, it can be exported from the integral
above, and we can write

f0°° x{ndt

1 p—
x£0)

E,- Cv =
but the product of the turnover time by the turnover number
is equal to the permanence time; therefore, we can write
f * x{£)dt
_Jo
! x40)

which is valid only if the drug was administered as a bolus at
time ¢ = 0. If the volume of that compartment is constant,
dividing numerator and denominator by it, we get

fo‘” cdt

= —o
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The above expression can be used to compute the per-
manence time at a specific point of sampling, provided the
drug is administered at time ¢ = 0 at that same point. If the
sampling point is representative of the uniform concentra-
tion over a whole compartment, then the fraction above will
be equal to the permanence time of that compartment.

With any other mode of administration, i.e., if the drug
does not enter compartment / at time ¢ = 0, the permanence
time is not equal to the fractions

f * x{t)dt
0
x{0)

f * cdt)dt
0
c{0)

but the above integrals have an important role in the descrip-
tion of the properties of a biological system, as shown else-
where (14).

EXIT TIME

The first relative moment of function x(¢) is defined as
the ratio

fo Zt - xf)dt
fo‘” x{(H)dt

With the hypothesis that the system is linear and state-
determined, it was shown by Rescigno and Gurpide (15), and
later rediscovered by Yamaoka et al. (1), that if c{¢) is the
concentration of a drug that was injected at the same point of
sampling as a bolus at time ¢ = 0, the first relative moment
of c(r) is equal to the expected time of exit of the drug from
the site of sampling (16).

In general, with the hypothesis that the fractional turn-
over rate is constant, but with administration of the drug at
any time or in any mode, we can write

f0°° t - x{t)dt fo‘” t - Kxd{t)dt

f * xd{0)dt f * Kax{t)dt
0 0
In the last fraction, the product Kx(f)dt is the amount of
drug leaving the compartment in the interval of time from ¢ to
t + dt, and ¢ is the time of this event; therefore, that fraction
is the expected time of exit of the drug from the compart-
ment, irrespective of when and how the drug entered the
compartment. We call this expected time the exit time, €);;
this quantity is called, by some authors, resident time, but
we prefer to use this term for a different quantity (16).
Dividing, again, numerator and denominator by the vol-
ume of the compartment V,,

fo‘” t - x{t)dt fo‘” t- cit)dt

f * x{t)dt f * cit)dt
0 0
where c?) is the concentration in the compartment.
The exit time for a pool of compartments is not neces-
sarily equal to the first relative moment of the function mea-
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suring the amount of drug in that pool (17). This fact be-
comes more evident with a simple example. Suppose that the
pool is formed by just two compartments, say { and j; calling
x(t) and x(¢) the amount of drug in those two compartments,
with

x(8) + x() = x()

we call apparent exit time (*; ; the first relative moment of
x(t) + x{(0),

fo‘” t - [xdt) + x(0)dt

Q) =
fo * [xdt) + x{(D)dt

while the real exit time, according to the definition, must be
computed with the ratio

f ot Thiox®) + Kiox0)d
Qi ‘] =

fo * kioxdt) + kjox;(t)]dt

where k,, and k,, are the respective fractional rates of exit of
the drug from the two compartments out of the pool. From
this fraction, the constants k,, and k;, cannot be eliminated,
but we can write

f Zt - kigxdd)dt f “t - x{(Ddt
_ 0 _ 0

t

fo * kioxi(f)dt fo ® x(t)dt

. fo t - kiox{()dt ) fo t - x(Hdt

fo * kiox/(f)dt f: x{(t)dt

By simple arithmetic manipulation we can show that

Min((},,Q)) = Q, ; = Max(Q,,9))
Min(Q;,Q};) = Qf; = Max(Q,,}))

where Min(Q;,Q) and Max(Q,,{);) mean the smaller and the
larger of the quantities in parentheses, respectively.
In the same way we can show that the difference

Q; — QF
has the sign of the product

(Qi - Qj) . (kio - kjo)

It follows that the apparent exit time and the true exit
time coincide when the two compartments have the same
exit time or the same fractional rate of exit. When this is not
the case, the true exit time will be larger than the apparent
one if the compartment with the larger exit time also has the
larger rate of exit, and vice versa.

In conclusion, without any hypothesis on the compart-
mentalization of a system, we can say only that the first

relative moment is an approximation of the exit time, and the
approximation depends on the disuniformity of the concen-
tration of the drug inside the system.

A number of properties of the exit time were discussed
by Rescigno (14) and by Rescigno and Gurpide (15).

DILUTION FACTOR AND STEADY-STATE VOLUME
OF DISTRIBUTION

Two Compartments

With a system of two compartments and a bolus injec-
tion in compartment 1, we have the differential equations

dx,
T —Kxy + kaixy (4))]
dx;
I +kipx1 — Koxp )
with initial conditions
0 =D, x0)=0

In these equations, K, and K, are the turnover rates of
the two compartments, while k,, and k,, are the transfer
rates from 1 to 2 and from 2 to 1, respectively. Of course the
following inequalities must hold:

0=k, =K, 0=k =K, (3)

The constants K, K,, k,,, and k,, are called the micropa-
rameters of the system.
The solutions of Egs. (1) and (2) are

x, (D = a;e” ™ + ae M “)
1 1 12

%) = aye™™ + aype M &)
where the parameters X\, \,, @,,, @y, d,, and a,, are called

the macroparameters of the system. They are determined by
the following equations:

( NN =K+ K,
AN h =K Ky -kt kg
J a, t+a,=D ©)

ay + ay =0
ay,; "\ +ap N =D-K,
\ @3 "N\ + ap " Ny =D -k,

If only compartment 1 has been sampled, i.e., if x,(¢) is
known but not x,(f), then we can compute the microparam-
eters K, and K, and the product k,,k,,;, but not k,, and k,,
separately. From the above equations we can therefore com-
pute

_anh toaph

Ky =
an + ap
anhy + aph;
Ky =———mm 7
ap + a2 M
anap(\ — )
kiky = ———5—

(an + ap)?
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and using inequalities (3),
kyzkn
K,

kizka
K;

thence

anap(\; — A’ _ault aph

=
(ay + aip) - (@anhy + ap\y) ai + an
8)
anap(\; — \)? anhy + aph
=< k —_—
(a1 + app) - (@i + aphy) aj + ap

If the initial concentration c,(0) of the drug in compart-
ment 1 has been measured, then we can compute the volume
V, of that compartment,

D

V= Ty )]

Now suppose that the drug is fed continuously into com-
partment | at a constant rate r; when a steady state is
reached, Eqgs. (1) and (2) become

-Kxy + kyx, +r=20
+kyoxy — Kyx, =0

and their solution is

_ Kyr
T KKy — kigkar

_ klzr
27 KKy — kigky

Thus at steady state we have

x1+x2 Ky+ kpp
X1 B Kz_

By analogy to definition (9), we can define the steady-
state volume of distribution Vgg as the ratio between the
total amount of drug in the body and its concentration in the
sampling compartment at steady state; therefore

X1+ x2

Veg =

S8 xl/Vl
K> + kyp
=% ;
The fraction

0= _Vis _ K, + k12

1 K,

is called the dilution factor.
Using inequality (8) we can now write

(an + ap)an\} + aA))
(an\y + ap\y)?

(an + apd(\ + \)
anhy + aph

=0=<
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The above inequalities can also be written in the form

an + an VY (an + a2 VW
=0=

an , a\’ an | an
NN Y

but

a,; + a;; = x,(0)

an an o
Lk f x\(t)dt
)\1 )\2 0

aip

g f“t xi(0)dt
32 T2 T T X1
NN Jo

therefore, calling 0, and 0_,,, the extreme values of 6,

. fo‘” txl(t)dt/ fom xi(t)dt

'min -
fo x1()dt/x1(0)
.1
A A
Bnax — ml—z
fo x;(8)dt/x1(0)

Thus 6, is the time of exit from compartment 1 divided
by the permanence time of the same compartment; 8., is
the sum of the time constants divided by the permanence
time of compartment 1.

The ratio 6,,.,/6,:, is @ measure of the uncertainty of
our knowledge of the behavior of the subject under investi-
gation when the drug will be administered by continuous
infusion or by repeated doses. The closer that ratio is to one,
the better we can estimate how much drug is present in the
body for a particular steady-state systemic concentration.

These results can easily be generalized to systems of
three or more compartments and to noncompartmental sys-
tems.

Three Compartments

With three compartments connected in all possible
ways, we have the differential equations

dxi
— = ~-Kix; + k21x2 + k31X3
dt
dx;
—- = tkpxi — Kaxy + kapxa
dt
dX3
e ke + kpzxo — Ksxs

With continuous infusion in compartment 1 at rate r, at
steady state those equations become
—Kx, + kyxy + kyyxs +r =20
tkix, — Kox, + kypx; = 0
+kysx, + kysx, — Kix;3 =0
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thence
X1+ x +x3
X1

_ KoKs — kasks + kipKs + kisksy + knKy + kipkys
KoK3y — kasks,

(10

(-8t - (vt visd) + 830 (yis + viz)
(1= 83)

where

1

ti=K~
¥

is the turnover time of compartment i,

ki ki

8U—Ki K_[

is the fraction of drug recirculated from compartment i to
compartment j and back, and vy, v, . - . are the fractions
transported along the path indicated by the subscripts, i.e.,

The fraction in Eq. (10) is, of course, equal to the dilu-
tion factor 9, i.e.,

X+ x3+ x3
= P

We can reach the same conclusion in a different way.
The dilution factor can be written in the form

x1tx+x3y Pi+P+Ps
0= =
x) Py

where P,, P,, and P, are the probabilities that a molecule of
the drug present in the system is in compartment 1, 2, or 3,
respectively. Now once a molecule enters compartment 1, 2,
or 3, it spends there, on the average, a time #,, 1, or I3,
respectively; the probability of entering compartment 1 is
equal to the probability of leaving one of the other two com-
partments, i.e., 1 ~ 8,5; the probability of entering compart-
ment 2 or 3 after leaving compartment 1 is v, + ¥;3, OF v;3
+ v123, respectively. In other words, we can write the pro-
portions,

Py U i _ Py
He(1—-83) - (viztvid 6yt v

thence Eq. (10) follows immediately.

Of course the fraction in Eq. (10) cannot be computed if
only compartment 1 has been sampled, but we can determine
some boundary values for it,

An upper boundary for 6 is given by

- (1 — 83) + £2(1 — 813) + 13(1 — By
tl(l - 523)

emax

in fact, it is easy to verify that
L - 8332 v, + vim2
L~ 8 =v3 + Vi3
the equal signs being valid when

Ky = kiy + ki3
Ky = ky + ks
Ky = ky + ky,

i.e., when the system is closed.
A lower boundary for 9 is given by

n( —83) + H(1 —dp) + 631 —8)) nt 1
I =83 — 813 — 83 — 8123 — d132 1 — 8y

Omin =

1 - 812~ 853 —~ 83 — B3 — dim
H(l — 83)

we should first prove that

(n(l — )t n(l —B3p) + (1 —8p) nt ts)

1= 82— 83— 83— 813 — 82 1 = 8

B S Bl E Ml Sl P Bl E
H(1 — 82)

Jhe -8t n ety - (vis t vizy)
B 11 — 32)
In fact the above inequality is equivalent to the follow-
ing inequalities:

L+t
[ — 83) + 151 — By3) + 13(1 — 8] — ===
1 -8
(1 — 812 — &3 — 83 — B3 — By3p)

=n-( -3+ vzt vizd + 13- (yiz + v123)

(201 = 813 = yi2 = v132) + 13(1 = B2 — vi3 — ¥23)

h+ 13

=7 = (1 — 812 — 83 — 823 — 3123 — J132)]

—

(1 = 83) - [128)3 + yi2 + vi32) + 63G@12 + v13 + vi3)

=(ty+ 13) - Bz + B3 + d123 + Bi3m2)

and, finally, to the two inequalities
Yiz t Vizz =85 + a3 + Byzz + Bz - Bz + Yiz + Yis2)
Yis + Vizz = 853 + a3 + Byzz + Bz - Bz + Yz + Vi23)

These two inequalities are obviously true, and they be-
come strict equalities when

Kz =k + kz;
Ky = ky + ka
i.e., when the drug is elimipated only from compartment 1.

Many Compartments

Suppose that the drug is distributed among n compart-
ments, but only one of them can be sampled, and that its
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concentration c,(r), after a bolus administration at time ¢ =
0, can be approximated reasonably well by a sum of expo-
nential functions, then

ot = ae™ + ae™ + - + g™
and in operational form (18)
a) a Qan
o = + o
ferd sHN s+ N s+ A,
_ _pos" A s an
ST gt g,

In general, i.e., with elimination from any compartment,
we can write

Vss
Vi
(time of exit from the organism)
— (time of entry into the sampling compartment)

(permanence time in the sampling compartment)

The permanence time 7', of the sampling compartment is
given by

f0°° ci(dt

_ _ Pn—1

T = =
! a0 pogn

(12)

The time of exit Q,, .., from the organism in general cannot
be calculated, but we can establish some boundaries to it.
We shall prove in general the following proposition:

Podn A gn—1 _ Pn-2 0= Podn-1 (13)
Pn-1 an Pn-1 Pr-1

The first part of the above inequalities is true because

n—1
=] 14)
qn (

f‘” t - ci(n)dt
0
Q= —
f * ci()dt
0

is the exit time from compartment 1, therefore

0,=0

system

in general, with the equal sign holding only when the drug
leaves the system exclusively from compartment 1.

To prove the second part of the proposition, observe
that the maximum possible value of the dilution factor is
reached when the drug does not leave the system from the
sampling compartment, but from some of the other compart-
ments. If this is the case, then suppose that the drug is ad-
ministered as a bolus in compartment 1, then infused into
that same compartment with a rate exactly equal to the rate
of elimination from the rest of the system. A steady state will
eventually be reached, and at that point such a system is
undistinguishable from a closed system fed with a single bo-
lus. In this system, of course,

q,=0
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after a bolus dose D given at time ¢ = 0, the concentration in
compartment 1 will be

() = pos" '+ pis" it 4 pay
BT+ qs T+ @ T+ gars
with
D
po = 3,
Vi
therefore

lim ¢i(#) = po
1—0

Pn—-1

lim ¢,(f) =

1> n—1

thence the dilution factor is pog, _,/p,,_,, and it does not
matter from which compartment the drug is leaving, as long
as this is not the compartment where the drug is initially fed,
q.e.d.

Using Eq. (11) it is easy to show that inequalities (13)
are equivalent to

3
X

We have shown that

Q’1 = Q’system = Q’#l

where the last term means the exit time from all compart-
ments excluding the first; from inequalities (13), multiplying
each term by T,, we get

Q] _ n-1 _ DPn-2 R Q#l - qn-1
dn Pn-1 an
the term
DPn-2
=0 -
Pn—1 *

appearing in Eq. (14), called the short circuit term (19,20), is
equal to the expected time spent by the drug in the system
after leaving the sampling compartment.

Noncompartmental Systems

Nakashima and Benet (8) showed how to compute the
exact value of the quantity that we call the dilution factor
when the fractional rates of exit from each of the compart-
ments in a linear mammillary model are known; they called
their formula a ‘‘noncompartmental equation,’” even though
their method depends strictly on strong compartmental hy-
potheses.

We have shown above that, if x(¢) is the amount of drug
present in the whole organism at time ¢, the ratio
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f: t - x(f)dt
fo‘” x(f)dt

is an approximation of the time of exit from the system.
Without a detailed knowledge of the compartmentalization
of the system under observation, we can only determine the
permanence time and the exit time at the sampling site, pro-
vided the system is linear and state-determined; in that case,
a lower bound for the dilution factor is

¢1(0) - fo‘” tey(o)dt

( fo = cl(t)dt)z

where c,(?) is the concentration of the drug at the sampling
site after a bolus administration in the same location.

If we measure the apparent exit time from the whole
system, we can also compute an alternate approximation of
the dilution factor,

as)

1
>
G_Tl

. i - [7 1 xteydr

system

T,

@
IR

f: ci(Hdt - f: x(t)dt

where x(¢) is the total amount of drug in the system, but we
do not know whether this approximation is in excess or in
deficit.

EXAMPLES

As an example consider a pharmacokinetic study con-
ducted in four different species with recombinant human
CD4 immunoglobulin G (rCD4-IgG), a protein under devel-
opment as an AIDS therapeutic (21,22). Following an intra-
venous bolus injection of rCD4-IgG, the concentration of the
protein in the serum was measured at different times, and the
experimental values were fitted to a sum of exponentials,

() = Zce™ ™

The experimental results are summarized in Table 1.

In Table II are listed the coefficients of {c(r)} for the four
species, computed using Eq. (11). Now we can use Eqgs. (12)
and (13) to compute 7, and the lower and upper bound of (0,
and 6. These values are shown in Table III, along with V;,

23

predict T,, V,, and the lower bound for ,, Vg, and 6 in
human from the preclinical animal data.

The ratio 6,,,,,/6in iS approximately 2.6 for the rat, 2.4
for the rabbit, 4.9 for the monkey, and 2.2 for the human.
Since this ratio in human is smaller than or equal to the ratio
in the other species, the uncertainty in the overall accumu-
lation of drug in the body following chronic administration
may be less in humans than in the other species, an impor-
tant consideration in safety assessment programs. Whether
this uncertainty in the determination of the amount of drug in
the body at steady state is acceptable or not depends on
other considerations. For rCD4-IgG, a compound with a
rather innocuous preclinical profile, the small uncertainty
was acceptable; for compounds with a narrow therapeutic
window or that exhibit unexpected toxicities in chronic dos-
ing situations, excessive accumulation may be potentially
harmful. When the behavior of the drug at steady state must
be determined with more precision than obtainable from
sampling only one compartment after a single bolus injec-
tion, other measurements are necessary.

A possible alternative was provided by Berman and
Schoenfeld (24) with the following results from an experi-
mental study. After a bolus intravenous injection of labeled
material, the quantity of radioactivity in the blood was de-
termined as a function of time; excreted radioactivity was
also collected, and the accumulated amount of tracer in the
excreta was obtained as a function of time. Since the tracer
accumulated approached 100% of the amount of radioactiv-
ity initially injected, it was assumed that the initial quantity
injected minus that in the measured compartment and in the
collected excreta was equal to the amount of tracer in the
remaining compartments of the system. The experimental
curves were fitted to a sum of exponentials,

¢t 3 _a 1 - 3
—_ = - + - t+_ t
co 8°¢ a¢ 8¢
Ct 1 2 3 _
A + - t
o 4¢ Taf

where ¢, is the amount of radioactivity injected, ¢, the
amount measured in the blood, and c, the total activity in the
body. For the purpose of this discussion the time scale in
these two equations is arbitrary. In operational form they
become

fe} St 4s+
o S$+6s2+11s+6

and the lower and upper bound of Vgs. It is interesting to fed _ s+l 16)
note that allometric scaling techniques (23) can be used to o S$E+3x+2
Table I. Pharmacokinetic Data of rCD4-IgG in Four Species

Weight Dose cy [ cy A A, A;
Species (kg) (mg/kg) (ng/ml) (ng/ml) (p.g/ml) (hr™") (hr ") (hr™})
Rat 0.333 0.14 1.21 2.6 0.3 6.15 0.21 0.048
Rabbit 3.3 0.04 0.35 0.23 0.037 0.825 0.0788 0.0172
Monkey 5.6 0.14 4.5 0.076 — 0.098 0.0133 —
Human 82.0 1.00 17.5 31 —_ 0.059 0.014 —_
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Table II. Coefficients of {c(¢)} from Table I

Species n Po P P2 9 92 q3
Rat 3 4.11 18.33 1.167 6.408 1.597 0.06199
Rabbit 3 0.617 0.2607 0.006143 0.921 0.08056 0.001118
Monkey 2 4.576 0.0673 — 0.1113 0.001303 —
Human 2 20.6 0.428 — 0.073 0.000826 —
o . . 5
The permanence time in the sampling compartment is kip = "
15
r =Pt 3 5.3 e
Podn 6 8 07y 16m 27
The time of exit from the sampling compartment is 5 ¢
kyp =~ — 5~
Gn1 Pn—a 11 16 23 4 2n

Without considering the data on ¢,, we can compute

Podn (q,.—n B pn—Z) < g < Podnm1

Pr-1 \ 4n Pn—1 Pn-1
276 44
A
225 15

1.226 < 6 < 2.934

a rather large interval.

Using the additional data for ¢,, we can compute an
approximate value of 8; in fact, the apparent exit time from
the system, (¥, can be computed from Eq. (16),

PO R
T2 7714
thence
B - =1.49
“"14 s

An even better approximation is obtained by using the
separate values ,, Q,, and {1, of the exit times from the
three compartments of the system, as can be estimated from
the data available.

As shown in the original paper (24), the transfer rates of
this system can be determined with two degrees of freedom.
Calling € and m two arbitrary parameters, the rates of exit
from the three compartments are

Similarly the disposition functions of the three compart-
ments are

ci(®) 3 _3 1 - 3
—_— = . + - ! o !
a0 8 ¢ Tae Ty

'

63_(”_ _g LT3 a2 é_ ot
C1(O)—(€ 8) e m-e + 8 €+ m e

and in operational form,
e} S +4-5+ 154
a0 $+6-$2+11-5+6
{ea} Qe — m)s + 4e — 37
@ S+6-2+11-5+6
{es} (B34 —3e + m)s + 32 — 4e + 3
a0 $+6-52+11 . 5+6

The permanence time of compartment 1 does not de-
pend upon € and m, as seen before.

The actual exit time (), from the system will be the
weighted average of the exit times from the three compart-
ments, the weights being their respective rates of exit; there-
fore,

_ ko€ + kyoQdy + k3()Q3
! kip + ko + k3o

Table III. Permanence Time (7,), Exit Time (£),), Initial Volume of Distribution (V,), Steady-State Volume of Distribution (V,,), and
Dilution Factor (8) of rCD4-1gG in the Four Species in Table I

Q, (n) V., (ml)
Species T, (hp) Min. Max. v, (ml) Min. Max. Min. Max.
Rat 4.58 10.0 25.8 1.3 11 63.5 2.19 5.62
Rabbit 8.90 29.6 72.0 214 710 1730 3,32 8.09
Monkey 11.2 17.4 85.4 1 263 1290 1.54 7.57
1.60 3.51

Human

25.2

40.2

88.4 3,980

6,370 14,000
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Table IV. Extreme Values of Some of the Parameters of the Com-
partmental System Examined by Berman and Schoenfeld (24)

€ mn ko ko k3o Q, 6
-0.09 —0.1875 1.25 0 1 2.149 1.536
0.5625 0.375 1.25 1 0.5 3.792 2.208

Table IV shows the range of values of € and m that give
physically realizable solutions to this compartmental sys-
tem, the corresponding extreme values of the parameters
ko, ko, and ksq, and the resulting values of (2, and 6.

Note that this range is much smaller than the one deter-
mined from the measurement in the first compartment alone.

SYMBOLS AND DEFINITIONS

Compartment = a homogeneous set of particles with the
same, constant probability of being removed or trans-
ferred

Dilution factor (8) = the ratio Vg¢/V,, steady-state volume
of distribution divided by initial volume of distribution

Exit time of compartment i (2;) = the ratio g t - c{t)dt/fg
cdt

Fractional turnover rate of compartment i(K,) = fraction of
drug in compartment i that is removed or transformed
per unit time

Initial volume of distribution (V,) = amount of drug in the
sampling compartment divided by concentration there

Linear system = a system where the principle of superpo-
sition holds

Permanence time of compartment i (7;) = expected interval
of time spent by the drug in all its passages through
compartment {

Pool = a nonhomogeneous set of particles defined by spe-
cific boundaries and composition

State-determined system = a system whose present state
determines all future states; also called ‘‘time-invariant
system’’

Steady-state volume of distribution (Vgg) = amount of drug
in the whole system divided by concentration in the
sampling compartment

Turnover number of compartment i (v;) = the ratio 7,/t,, or
the expected number of passages of a drug through the
same compartment

Turnover time of compartment i () = expected interval of
time spent by the drug in each passage through com-
partment {
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